ПРО ІТЕРАЦІЙНІ МЕТОДИ ДЛЯ РОЗВ’ЯЗУВАННЯ НЕЛІНІЙНИХ ЗАДАЧ ПРО НАЙМЕНШІ КВАДРАТИ З ДЕКОМПОЗИЦІЄЮ ОПЕРАТОРА

С. Шахно, Г. Ярмола
Львівський національний університет імені Івана Франка,
вул. Університетська, 1, Львів, 79000, e-mail: s_shakhno@lnu.edu.ua,
halyna.yarmola@lnu.edu.ua

Запропоновано та досліджено ітераційні диференціально-різницеві методи розв’язування нелінійної задачі про найменші квадрати з декомпозицією оператора, які використовують замість матриці Якобі сума похідної від диференційованої частини оператора і поділену різницю від недиференційованої частини. Доведено теореми, які обґрунтовують локальну збіжність комбінованих методів за слабких ω-умов, визначено швидкість їхньої збіжності. Наведено результати числового експерименту.

Ключові слова: нелінійна задача про найменші квадрати, диференціально-різницевий метод, декомпозиція оператора, поділені різниці, швидкість збіжності, відхил.

1. ВВЕДЕНИЕ

Нелінійні задачі про найменші квадрати часто треба розв’язувати в наукових та інженерних задачах. Зокрема, вони виникають у разі розв’язування перевизначеніх систем рівнянь, оцінювання параметрів фізичних процесів за результатами вимірювань, побудови нелінійних регресійних моделей, розв’язування інженерних проблем тощо. Ефективними методами розв’язування нелінійної задачі про найменші квадрати є метод Гаусса-Ньютона [1, 2, 10] та його модифікації [1, 5, 10]. Однак часто на практиці маємо проблеми з обчисленням похідних. У такому випадку можна використовувати ітераційно-різницеві методи [5, 9, 15, 17], які не потребують обчислення матриці похідних. Проте інколи нелінійна функція складається з диференційованої і недиференційованої частин. Хоч можна застосовувати для розв’язування таких задач різницеві ітераційні методи, проте ліпше побудувати ітераційні методи, які враховують цю специфіку. Зокрема, можна використовувати замість повної матриці Якобі (яка не існує) тільки похідну від диференційовної частини оператора. Однак отримані так методи збігаються досить повільно. Ефективнішими виявляються комбіновані методи, які замість повної матриці Якобі використовують суму похідної від диференційованої частини оператора та поділеної різниці від недиференційованої частини. Зауважимо, що такий підхід добре зарекомендував себе для розв’язування нелінійних рівнянь [4, 11, 12, 13, 16].

Вперше побудовано комбінований метод для розв’язування нелінійної задачі про найменші квадрати на базі методу Гаусса-Ньютона та методу типу хорд, а також метод, який використовує тільки похідну від диференційованої частини оператора, у працях [6, 18] та вивчено їхню збіжність за класичних та узагальнених умов Ліпшиця. Однак у цьому випадку приписувалося існування оберненого оператора $[F(x') + G(x')]^{-1}$, тобто вважалося, що оператор $G(x)$ диференційований в розв’язку x'. © Шахно С., Ярмола Г., 2018
Ми проводимо обґрунтування локальної збіжності методів типу Гаусса-Ньютона-хорд і типу Гаусса-Ньютона-Курчатова за слабких ω-умов, причому існування оператора $G(x') = G(x', x')$ не припускається. Такий підхід використано під час вивчення збіжності методу Ньютона-Курчатова для розв'язування нелінійних рівнянь [13]. На тестових задачах ми з'ясовуємо її ефективність порівняно з базовими різницевими методами [5, 17]. Для розв'язування лінійних систем рівнянь, які виникають на кожній ітерації нелінійних алгоритмів, використовуємо методи з [8].

2. ФОРМУЛЮВАННЯ ЗАДАЧІ

Розглянемо нелінійну задачу про найменші квадрати

$$\min_{x \in R^n} \frac{1}{2} (F(x) + G(x))^T (F(x) + G(x)),$$

де функція відхилу $F + G : R^n \rightarrow R^m$ (множина по x); F – неперервно диференційовна функція; G – неперервна функція, диференційовності якої загалом не потребується.

Для знаходження розв’язку задачі (1) ми запропонували ітераційні процеси, побудовані на базі методів Гаусса-Ньютона та типу хорд [6, 18]

$$x_{n+1} = x_n - (A^*_n A_n)^{-1} A^*_n (F(x_n) + G(x_n)), \quad n = 0, 1, \ldots,$$

і методів Гаусса-Ньютона та типу Курчатова [7]

$$x_{n+1} = x_n - (A^*_n A_n)^{-1} A^*_n (F(x_n) + G(x_n)), \quad n = 0, 1, \ldots,$$

Тут $F(x)$ – матриця Якобі від $F(x) = G(x, y)$ – поділена різниця першого порядку функції $G(x)$ [3] за точками x, y; x_0 – задані початкові наближення.

Частковим випадком (1) при $m = p$ є система нелінійних рівнянь

$$F(x) + G(x) = 0.$$
2) існує обернений оператор \((A^T_A)^{-1}\) для деякого \(\tilde{x}\) такого, що \(\|\tilde{x} - x^*\| = \delta > 0\) і \(\|(A^T_A)^{-1}\| \leq B\);
3) в області \(D\) похідна Фреше \(F^*\) задовольняє умову
\[
\|F'(x) - F'(y)\| \leq \alpha \|x - y\|
\]
(4) де \(\alpha_1 : \mathbb{R} \rightarrow \mathbb{R}_+, \mathbb{R}_+ = \{x \in \mathbb{R} : x \geq 0\}\), - неперервна неспадна функція така, що існує неперервна і неспадна функція \(h : [0,1] \rightarrow \mathbb{R}_+\) причому \(\alpha_1(x) \leq h(t)\alpha_1(z)\) з \(t \in [0,1]\) і \(z \in [0,\infty]\), \(\int_0^1 h(t)dt = T\);

4) в області \(D\) функція \(G\) має поділені різниці першого порядку, які задовольняють умову
\[
\|G(x,y) - G(u,v)\| \leq \alpha_2 \|x - u\| \|y - v\|
\]
(5) де \(\alpha_2 : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_+\) – неперервна неспадна функція двох аргументів;

5) існує \(r \in \mathbb{R}_+\) таке, що \(\Omega = \Omega(x^*, r) \subseteq D\) і \(m + \tilde{m} < 1\), \(\tilde{m} = B[\alpha + \alpha_2(r) + \alpha_2(\delta, r)]\|T\alpha_2(0, r)\|\), \(m = B[2\alpha + \alpha_2(r) + \alpha_2(\delta, r)]\|\alpha_2(0, r)\|\);

6) \(\|F'(x') + G(x', \tilde{x})\| \leq \alpha\).

Тоді для \(x_{n+1}, x_n \in \Omega\) ітераційний процес (2) коректно визначений, генерована ним послідовність \(\{x_n\}, n = 0,1,...\) міститься у відкритій області \(\Omega\) та збігається до розв’язку \(x^*\). Крім того, справжується оцінка
\[
\|x_{n+1} - x^*\| \leq Q \|x_n - x^*\| \leq Q^{n+1} \|x_0 - x^*\|
\]
(8) де \(Q = g(\rho)[\alpha + \alpha_2(\rho) + \alpha_2(\delta, \rho)][T\alpha_2(0, \rho)]\), \(g(\rho) = B[1 - B[2\alpha + \alpha_2(\rho) + \alpha_2(\delta, \rho)]][\alpha_2(0, \rho)]^{-1}\), \(\rho = \max\{\|x_0 - x^*\|, \|x_{n-1} - x^*\|\}\).

Доведення. Очевидно, що з (6) i (7) випливає \(m < 1\), \(\tilde{m} < 1\) та
\[
Q = \frac{B[\alpha + \alpha_2(\rho) + \alpha_2(\delta, \rho)][T\alpha_2(0, \rho)]}{1 - B[2\alpha + \alpha_2(\rho) + \alpha_2(\delta, \rho)][\alpha_2(0, \rho)]} \leq \frac{\tilde{m}}{1 - m} < 1.
\]
Позначимо \(A_0 = F'(x_0) + G(x_0, x_{n-1})\). Приймемо \(n = 0\). За припущенням, \(x_{n-1}, x_0 \in \Omega\). Зробимо таку оцінку:
\[
\|I - (A^T_A)^{-1}A^T_A\| \leq \|(A^T_A)^{-1}(A^T_A - A^T_A)\| = \|(A^T_A)^{-1}(A^T_A - A^T_A + A^T_A - A^T_A)\| \leq \|(A^T_A - A^T_A^\top)\| \leq \|B(\alpha A - A) + \|A^T_A - A^T_A\| A - A + \|A^T_A - A^T_A\| A - A\| + \alpha \|A^T_A - A^T_A\|)\|
\]
(9) \(B\)(к). Врахуємо, що
і для евклідової норми \(\| A_0 - A_n \| = \| A_1^T - A_n^T \| \). Тоді з нерівностей (9), (10) і ознаки рівності \(r \) отримаємо

\[
I - (A_1^T A_0)^{-1} A_1^T A_0 \leq B[2\alpha + \alpha_1 (\| x_0 - x^* \|) + \alpha_2 (\| x_0 - x^* \| + \| x^* - \tilde{x} \|, \| x_{n-1} - x^* \|)]
\times
\times (\| x_0 - x^* \|) + \alpha_2 (\| x_0 - x^* \| + \| x^* - \tilde{x} \|, \| x_{n-1} - x^* \|)] \leq
\leq B[2\alpha + \alpha_1 (\rho + \rho + \delta, \rho)] + \alpha_2 (\rho + \rho + \delta, \rho)] \leq m < 1.
\]

Далі за теоремою Банаха про обернений оператор [2] з (9), (10) і (11) матимемо

\[
\|(A_1^T A_0)^{-1}\| \leq g_n = B[1 - B[2\alpha + \alpha_1 (\rho + \rho + \delta, \rho)] + \alpha_2 (\rho + \rho + \delta, \rho)] \leq m < 1.
\]

Отже, ітерація \(x_i \) коректно визначена.

Далі доведемо, що \(x_i \in \Omega \). Насамперед отримаємо оцінку

\[
\| x_i - x^* \| = \| x_0 - x^* - (A_1^T A_0)^{-1} (A_1^T (F(x_0) + G(x_0)) - A_1^T (F(x^*) + G(x^*))) \| \leq
\leq \| -(A_1^T A_0)^{-1} \| \| A_1^T (F(x_0) + G(x_0)) - A_1^T (F(x^*) + G(x^*)) \|.
\]

Звідси, з урахуванням нерівностей

\[
\| A_0 - \int_0^1 F(x_0 + t(x^* - x_0)) \, dt - G(x_0, x^*) \| =
= \| F(x_0) - \int_0^1 F(x_0 + t(x^* - x_0)) \, dt + G(x_0, x_1) - G(x_0, x^*) \| \leq
\leq \int_0^1 \alpha_1 (t \| x_0 - x^* \|) \, dt + \alpha_2 (0, \| x_1 - x^* \|) \leq \int_0^1 h(t) \alpha_1 (t \| x_0 - x^* \|) \, dt + \alpha_2 (0, \| x_1 - x^* \|) =
= T \alpha_1 (\| x_0 - x^* \|) + \alpha_2 (0, \| x_1 - x^* \|),
\]

отримаємо
\[||x_1 - x|| \leq B(\alpha + \omega_1(||x_0 - x'||) + \omega_2(||x_0 - x'|| + ||x' - \bar{x}'||,||x_1 - x'||) || x_0 - x'|| \times (T \omega_1(||x_0 - x'||) + \omega_2(0,||x_0 - x'||) || x_0 - x'|| || x_1 - x'||) || x_1 - x'||) || x_1 - x'|| \times (1 - B[2\alpha + \omega_1(||x_0 - x'||) + \omega_2(||x_0 - x'|| + ||x' - \bar{x}'||,||x_1 - x'||) || x_1 - x'||) \times \{\omega_1(||x_0 - x'||) + \omega_2(||x_0 - x'|| + ||x' - \bar{x}'||,||x_1 - x'||) || x_1 - x'|| \times \leq \frac{\mu}{m} \leq \frac{m}{1 - m} \leq ||x_0 - x'|| \leq r, \]

тобто \(x_1 \in \Omega \) і справджується нерівність (8) для \(n = 0 \).

Припустимо, що \(x_n \in \Omega \) для \(n = 0, 1, \ldots, k \) і виконується оцінка (8) для \(n = 0, 1, \ldots, k-1 \), де \(k \geq 1 \) — ціле число. Далі доведемо, що \(x_{k+1} \in \Omega \) і справджується оцінка (8) для \(n = k \).

Визначимо
\[||I - (A^T A)^{-1} A^T A|| = ||(A^T A)^{-1} (A^T A - A^T A) || = \leq ||(A^T A)^{-1} || \leq || A^T || || A - A \|| + || A^T - A^T || || A - A \|| + || A^T - A^T || || A || \leq B(\alpha \leq || A - A \|| + || A^T - A^T || || A - A \|| + || A^T - A^T || || A || \leq B[2\alpha + \omega_1(||x_1 - x'||) + \omega_2(||x_1 - \bar{x}'||,||x_{k+1} - x'||) \times \{\omega_1(||x_1 - x'||) + \omega_2(||x_1 - \bar{x}'||,||x_{k+1} - x'||) \times \leq B[2\alpha + \omega_1(\rho) + \omega_2(\rho + \delta, \rho)]|| \omega_1(\rho) + \omega_2(\rho + \delta, \rho) < 1. \]

Отже, \((A^T A)^{-1} \) існує і
\[||(A^T A)^{-1} || \leq g_n = B[1 - B[2\alpha + \omega_1(||x_1 - x'||) + \omega_2(||x_1 - \bar{x}'||,||x_{k+1} - x'||) \times \{\omega_1(||x_1 - x'||) + \omega_2(||x_1 - \bar{x}'||,||x_{k+1} - x'||) \times \leq B[2\alpha + \omega_1(\rho) + \omega_2(\rho + \delta, \rho)]|| \omega_1(\rho) + \omega_2(\rho + \delta, \rho) \leq g_n || x_{k+1} - x'|| \leq ||x_1 - x'|| \leq \mu \leq \frac{m}{1 - m} \leq r, \]

Тому ітерація \(x_{k+1} \) коректно визначена і справджується оцінка
\[||x_{k+1} - x|| \leq ||x_1 - x'|| - (A^T A)^{-1} (A^T (F(x_0) + G(x_0) - A^T (F(x') + G(x'))) || \leq \leq ||(A^T A)^{-1} \leq \frac{B}{\omega_1(||x_1 - x'||) + \omega_2(||x_1 - \bar{x}'||,||x_{k+1} - x'||) \times \{\omega_1(||x_1 - x'||) + \omega_2(||x_1 - \bar{x}'||,||x_{k+1} - x'||) \times \leq ||x_0 - x'|| \leq \mu \leq \frac{m}{1 - m} \leq r, \]
Що доводить

і оцінку (8) для .

Отже, ітераційний процес (2) коректно визначений, для всіх . Це доводить збіжність при .

Доведення теореми 1 завершено.

Теорема 2. Нехай , причому , причому

для деякого такожо, що , і

Функція задовольняє умову (4) і функція має поділені різниці першого порядку, які задовольняють умову (5); існує таке, що і

Тоді для ітераційний процес (3) коректно визначений, генерована ним послідовність міститься у відкритій області та збігається до розв’язку . Крім того, справджується оцінка

де

Доведення теореми 2 проводиться аналогічно до теореми 1.

Теорема 3 визначає область єдності розв’язку задачі (1).

Теорема 3. Нехай виконуються умови теореми 1, причому існує , таке, що

Тоді єдиний розв’язок задачі (1) в .

Доведення. Припустимо, що існує інший розв’язок . Тоді

А. Шахно, Г. Ярмола
ISSN 2078–5097. Вісн. Львів. ун-ту. Сер. прикл. матем. та інф. 2018. Вip. 26
Ми прийшли до суперечності. Отже, розв'язок задачі (1) єдиний. Теорему доведено.

4. РЕЗУЛЬТАТИ ЧИСЛОВОГО ЕКСПЕРИМЕНТУ

На кількох тестових прикладах порівнююмо швидкості збіжності комбінованих методів (2) і (3) та різницевих методів для нелінійних задач про найменші квадрати [5]

\[x_{n+1} = x_n - \left(A_n^T A_n \right)^{-1} A_n^T (F(x_n) + G(x_n)), \quad n = 0, 1, \ldots, \]
\[A_n = F(x_n, x_{n-1}) + G(x_n, x_{n-1}). \]

Тестування проводили на нелінійних системах з недиференційовним оператором з нульовим і з ненульовим відхилами. Класичний метод Гаусса-Ньютона для їхнього розв'язування незастосовний. Результати шукали з точністю \(\varepsilon = 10^{-8} \).

Обчислення виконували до виконання умови \(\| x_{n+1} - x_n \| \leq \varepsilon \).

Позначимо \(f' = \frac{1}{2} (F(x') + G(x'))^T (F(x') + G(x')). \)

Приклад 1. \(p = 2, \ m = 3; \)

\[\begin{cases} x^2 + 3y - 7 + |2,5 - 2x| = 0, \\ 2y - 1 + 2y - |\sqrt{\text{x}}y + 1,5y - 2| = 0, \\ x^2 - |y| = 0, \end{cases} \]

\((x'; y') = (-1; \ 0,5), \ f' = 0. \)

Приклад 2. \(p = 2, \ m = 3; \)

\[\begin{cases} x^2 - y + 1 - \frac{1}{9} \sqrt{|x - 1|} = 0, \\ x + y^2 - 7 + \frac{1}{9} \sqrt{|y|} = 0, \\ x(y - 1) - 3 + \frac{1}{9} \sqrt{|x^2 - y^2 - 9|} = 0, \end{cases} \]

\((x'; y') \approx (1,1569704; \ 2,3605937), \ f' \approx 2.7089294 \cdot 10^{-4}. \)
У табл. наведено результати числового експерименту, зокрема, порівняємо досліджувані методи за кількістю ітерацій, зроблених для знаходження розв’язку з заданою точністю. Знак "*" означає, що метод збігся до іншого розв’язку \((x^*; y^*) \approx (2,2224003; 0,0385237)\) з відхилом \(f^* \approx 1,1580615 \cdot 10^{-2}\).

<table>
<thead>
<tr>
<th>Номер прикладу</th>
<th>((x_0, y_0))</th>
<th>Метод</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(12)</td>
</tr>
<tr>
<td>1</td>
<td>(-1,5; 1)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(-15; 10)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>(-150; 100)</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>(1; 2)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>(10; 20)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>(100; 200)</td>
<td>21</td>
</tr>
</tbody>
</table>

5. ВИСНОВКИ

Отже, на підставі теоретичних досліджень, практичних розрахунків і порівняння отриманих результатів можна стверджувати, що комбіновані диференціально-різницівні методи (2) і (3) збігаються швидше, ніж методи типу хорд (12) і типу Курчатова (13).

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

Стаття: надійшла до редколегії 11.07.2018
допрацювано 10.10.2018
прийнята до друку 31.10.2018

ON ITERATIVE METHODS FOR SOLVING NONLINEAR LEAST SQUARES PROBLEMS WITH OPERATOR DECOMPOSITION

S. Shakhno, H. Yarmola
Ivan Franko National University of Lviv,
Universytetska Str., 1, Lviv, 79000, e-mail: s_shakhno@lnu.edu.ua,
halyna.yarmola@lnu.edu.ua

The iterative differential-difference methods for solving nonlinear least squares problems with decomposition of the operator are proposed and investigated. They use the sum of derivative of differentiable part of operator and divided difference of non-differentiable part of the operator instead the Jacobian. The local convergence of the proposed method under weak ω-conditions is justified and the rates of convergence are established. Numerical results are presented.

Key words: nonlinear least squares problem, differential-difference method, divided differences, decomposition of operator, rate of convergence, residual.